
61th International Mathematical Olympiad

Day 1. O�cial Solutions

Problem 1. Consider the convex quadrilateral ABCD. The point P is in the interior of
ABCD. The following ratio equalities hold:

=PAD : =PBA : =DPA � 1 : 2 : 3 � =CBP : =BAP : =BPC.

Prove that the following three lines meet in a point: the internal bisectors of angles =ADP
and =PCB and the perpendicular bisector of segment AB.

Solution 1. Let ϕ � =PAD and ψ � =CBP ; then we have =PBA � 2ϕ, =DPA � 3ϕ,
=BAP � 2ψ and =BPC � 3ψ. Let X be the point on segment AD with =XPA � ϕ. Then

=PXD � =PAX �=XPA � 2ϕ � =DPA�=XPA � =DPX.

It follows that triangle DPX is isosceles with DX � DP and therefore the internal angle
bisector of =ADP coincides with the perpendicular bisector of XP. Similarly, if Y is a point
on BC such that =BPY � ψ, then the internal angle bisector of =PCB coincides with the
perpendicular bisector of PY . Hence, we have to prove that the perpendicular bisectors of XP ,
PY , and AB are concurrent.

Notice that

=AXP � 180� �=PXD � 180� � 2ϕ � 180� �=PBA.

Hence the quadrilateral AXPB is cyclic; in other words, X lies on the circumcircle of trian-
gle APB. Similarly, Y lies on the circumcircle of triangle APB. It follows that the perpen-
dicular bisectors of XP , PY , and AB all pass through the center of circle pABY PXq. This
�nishes the proof.

Comment. Introduction of points X and Y seems to be the key step in the solution above. Note that

the same point X could be introduced in di�erent ways, e.g., as the point on the ray CP beyond P
such that =PBX � ϕ, or as a point where the circle pAPBq meets again AB. Di�erent de�nitions of

X could lead to di�erent versions of the further solution.
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Solution 2. We de�ne the angles ϕ � =PAD, ψ � =CBP and use =PBA � 2ϕ, =DPA �
3ϕ, =BAP � 2ψ and =BPC � 3ψ again. Let O be the circumcenter of 4APB.

Notice that =ADP � 180� � =PAD � =DPA � 180� � 4ϕ, which, in particular, means
that 4ϕ   180�. Further, =POA � 2=PBA � 4ϕ � 180��=ADP , therefore the quadrilateral
ADPO is cyclic. By AO � OP , it follows that =ADO � =ODP . Thus DO is the internal
bisector of =ADP . Similarly, CO is the internal bisector of =PCB.

Finally, O lies on the perpendicular bisector of AB as it is the circumcenter of 4APB.
Therefore the three given lines in the problem statement concur at point O.
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Problem 2. The real numbers a, b, c, d are such that a ¥ b ¥ c ¥ d ¡ 0 and a� b� c�d � 1.
Prove that

pa� 2b� 3c� 4dq aa bb cc dd   1.

Solution 1. The weighted AM�GM inequality with weights a, b, c, d gives

aabbccdd ¤ a � a� b � b� c � c� d � d � a2 � b2 � c2 � d2,

so it su�ces to prove that pa� 2b� 3c� 4dqpa2� b2� c2� d2q   1 � pa� b� c� dq3. This can
be done in various ways, for example:

pa� b� c� dq3 ¡ a2pa� 3b� 3c� 3dq � b2p3a� b� 3c� 3dq

� c2p3a� 3b� c� 3dq � d2p3a� 3b� 3c� dq

¥ pa2 � b2 � c2 � d2q � pa� 2b� 3c� 4dq.

Solution 2. From b ¥ d we get

a� 2b� 3c� 4d ¤ a� 3b� 3c� 3d � 3 � 2a.

If a   1
2
, then the statement can be proved by

pa� 2b� 3c� 4dq aabbccdd ¤ p3 � 2aqaaabacad � p3 � 2aqa � 1 � p1 � aqp1 � 2aq   1.

From now on we assume 1
2
¤ a   1.

By b, c, d   1 � a we have

bbccdd   p1 � aqb � p1 � aqc � p1 � aqd � p1 � aq1�a.

Therefore,
pa� 2b� 3c� 4dqaabbccdd   p3 � 2aq aa p1 � aq1�a.

For 0   x   1, consider the functions

fpxq � p3� 2xqxxp1� xq1�x and gpxq � log fpxq � logp3� 2xq� x log x�p1� xq logp1� xq;

hereafter, log denotes the natural logarithm. It is easy to verify that

g2pxq � �
4

p3 � 2xq2
�

1

x
�

1

1 � x
�

1 � 8p1 � xq2

xp1 � xqp3 � 2xq2
¡ 0,

so g is strictly convex on p0, 1q.
By g

�
1
2

�
� log 2� 2 � 1

2
log 1

2
� 0 and lim

xÑ1�
gpxq � 0, we have gpxq ¤ 0 (and hence fpxq ¤ 1)

for all x P
�
1
2
, 1

�
, and therefore

pa� 2b� 3c� 4dqaabbccdd   fpaq ¤ 1.

Comment. For a large number of variables a1 ¥ a2 ¥ . . . ¥ an ¡ 0 with
°

i ai � 1, the inequality�¸
i

iai

�¹
i

aaii ¤ 1

does not necessarily hold. Indeed, let a2 � a3 � . . . � an � ε and a1 � 1 � pn � 1qε, where n and

ε P p0, 1{nq will be chosen later. Then�¸
i

iai

�¹
i

aaii �

�
1�

npn� 1q

2
ε



εpn�1qεp1� pn� 1qεq1�pn�1qε. p1q

If ε � C{n2 with an arbitrary �xed C ¡ 0 and n Ñ 8, then the factors εpn�1qε � expppn� 1qε log εq
and p1� pn� 1qεq1�pn�1qε tend to 1, so the limit of p1q in this set-up equals 1 � C{2. This is not

simply greater than 1, but it can be arbitrarily large.
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Problem 3. There are 4n pebbles of weights 1, 2, 3, . . . , 4n. Each pebble is coloured in one
of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles
into two piles so that the following two conditions are both satis�ed:

• The total weights of both piles are the same.

• Each pile contains two pebbles of each colour.

Solution 1. Let us pair the pebbles with weights summing up to 4n� 1, resulting in the set
S of 2n pairs: t1, 4nu, t2, 4n � 1u, . . . , t2n, 2n � 1u. It su�ces to partition S into two sets,
each consisting of n pairs, such that each set contains two pebbles of each color.

Introduce a multi-graphG (i.e., a graph with loops and multiple edges allowed) on n vertices,
so that each vertex corresponds to a color. For each pair of pebbles from S, we add an edge
between the vertices corresponding to the colors of those pebbles. Note that each vertex has
degree 4. Also, a desired partition of the pebbles corresponds to a coloring of the edges of G in
two colors, say red and blue, so that each vertex has degree 2 with respect to each color (i.e.,
each vertex has equal red and blue degrees).

To complete the solution, it su�ces to provide such a coloring for each component G1 of G.
Since all degrees of the vertices are even, in G1 there exists an Euler circuit C (i.e., a circuit
passing through each edge of G1 exactly once). Note that the number of edges in C is even (it
equals twice the number of vertices in G1). Hence all the edges can be colored red and blue so
that any two edges adjacent in C have di�erent colors (one may move along C and color the
edges one by one alternating red and blue colors). Thus in G1 each vertex has equal red and
blue degrees, as desired.

Comment 1. To complete Solution 1, any partition of the edges of G into circuits of even lengths

could be used. In the solution above it was done by the reference to the well-known Euler Circuit

Lemma: Let G be a connected graph with all its vertices of even degrees. Then there exists a circuit

passing through each edge of G exactly once.

Solution 2. As in Solution 1, we will show that it is possible to partition 2n pairs t1, 4nu,
t2, 4n�1u, . . . , t2n, 2n�1u into two sets, each consisting of n pairs, such that each set contains
two pebbles of each color.

Introduce a multi-graph (i.e., a graph with multiple edges allowed) Γ whose vertices corre-
spond to pebbles; thus we have 4n vertices of n colors so that there are four vertices of each
color. Connect pairs of vertices t1, 4nu, t2, 4n� 1u, . . . , t2n, 2n� 1u by 2n black edges.

Further, for each monochromatic quadruple of vertices i, j, k, ` we add a pair of grey edges
forming a matching, e.g., pi, jq and pk, `q. In each of n colors of pebbles we can choose one of
three possible matchings; this results in 3n ways of constructing grey edges. Let us call each of
3n possible graphs Γ a cyclic graph. Note that in a cyclic graph Γ each vertex has both black
and grey degrees equal to 1. Hence Γ is a union of disjoint cycles, and in each cycle black and
grey edges alternate (in particular, all cycles have even lengths).

It su�ces to �nd a cyclic graph with all its cycle lengths divisible by 4. Indeed, in this case,
for each cycle we start from some vertex, move along the cycle and recolor the black edges
either to red or to blue, alternating red and blue colors. Now blue and red edges de�ne the
required partition, since for each monochromatic quadruple of vertices the grey edges provide
a bijection between the endpoints of red and blue edges.

Among all possible cyclic graphs, let us choose graph Γ0 having the minimal number of
components (i.e., cycles). The following claim completes the solution.

Claim. In Γ0, all cycle lengths are divisible by 4.
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Proof. Assuming the contrary, choose a cycle C1 with an odd number of grey edges. For some
color c the cycle C1 contains exactly one grey edge joining two vertices i, j of color c, while the
other edge joining two vertices k, ` of color c lies in another cycle C2. Now delete edges pi, jq
and pk, `q and add edges pi, kq and pj, `q. By this switch we again obtain a cyclic graph Γ1

0 and
decrease the number of cycles by 1. This contradicts the choice of Γ0. l

Comment 2. Use of an auxiliary graph and reduction to a new problem in terms of this graph is one

of the crucial steps in both solutions presented. In fact, graph G from Solution 1 could be obtained

from any graph Γ from Solution 2 by merging the vertices of the same color.
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61th International Mathematical Olympiad

Day 2. O�cial Solutions

Problem 4. There is an integer n ¡ 1. There are n2 stations on a slope of a mountain, all at
di�erent altitudes. Each of two cable car companies, A and B, operates k cable cars; each cable
car provides a transfer from one of the stations to a higher one (with no intermediate stops).
The k cable cars of A have k di�erent starting points and k di�erent �nishing points, and a
cable car which starts higher also �nishes higher. The same conditions hold for B. We say
that two stations are linked by a company if one can start from the lower station and reach the
higher one by using one or more cars of that company (no other movements between stations
are allowed).

Determine the smallest positive integer k for which one can guarantee that there are two
stations that are linked by both companies.

Answer: k � n2 � n� 1.

Solution. Number the stations by 1, 2, . . . , n2 from the bottom to the top.

We start with showing that for any k ¤ n2 � n there may be no pair of stations linked by
both companies. Clearly, it su�ces to provide such an example for k � n2 � n.

Let company A connect the pairs of stations of the form pi, i � 1q, where n - i. Then all
pairs of stations pi, jq linked by A satisfy ri{ns � rj{ns.

Let company B connect the pairs of the form pi, i�nq, where 1 ¤ i ¤ n2�n. Then pairs of
stations pi, jq linked by B satisfy i � j pmod nq. Clearly, no pair pi, jq satis�es both conditions,
so there is no pair linked by both companies.

Now we show that for k � n2 � n � 1 there always exist two required stations. De�ne an
A-chain as a sequence of stations a1   a2   . . .   at such that company A connects ai with ai�1

for all 1 ¤ i ¤ t � 1, but there is no A-car transferring from some station to a1 and no A-car
transferring from at to any other station. De�ne B-chains similarly. Moving forth and back,
one easily sees that any station is included in a unique A-chain (possibly consisting of that
single station), as well as in a unique B-chain. Now, put each station into a correspondence to
the pair of the A-chain and the B-chain it belongs to.

All �nishing points of A-cars are distinct, so there are n2 � k � n� 1 stations that are not
such �nishing points. Each of them is a starting point of a unique A-chain, so the number of
A-chains is n�1. Similarly, the number of B-chains also equals n�1. Hence, there are pn�1q2
pairs consisting of an A- and a B-chain. Therefore, two of the n2 stations correspond to the
same pair, so that they belong to the same A-chain, as well as to the same B-chain. This means
that they are linked by both companies, as required.

Comment 1. The condition that a car which starts higher also �nishes higher is not used in the

above solution.

Comment 2. If the number of stations were N , then the answer would be N � P?
N

T � 1. The

solution above works verbatim for this generalization.
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Problem 5. A deck of n ¡ 1 cards is given. A positive integer is written on each card. The
deck has the property that the arithmetic mean of the numbers on each pair of cards is also
the geometric mean of the numbers on some collection of one or more cards.

For which n does it follow that the numbers on the cards are all equal?

Answer: For all integer n ¡ 1.

Solution 1. Suppose that the numbers a1, . . . , an written on the cards are not all equal. Let
d � gcdpa1 . . . , anq. If d ¡ 1 then replace the numbers a1, . . . , an by a1

d
, . . . , an

d
; all arithmetic

and all geometric means will be divided by d, so we obtain another deck of cards satisfying the
condition. Hence, without loss of generality, we can assume that gcdpa1 . . . , anq � 1.

We show two numbers, am and ak such that their arithmetic mean, am�ak
2

is di�erent from
the geometric mean of any (nonempty) subsequence of a1 . . . , an, thus reaching a contradiction.

Choose the index m P t1, . . . , nu such that am � maxpa1, . . . , anq. Note that am ¥ 2,
because a1, . . . , an are not all equal. Let p be a prime divisor of am.

Let k P t1, . . . , nu be an index such that ak � maxtai : p - aiu. Due to gcdpa1 . . . , anq � 1,
not all ai are divisible by p, so such a k exists. Note that am ¡ ak because am ¥ ak, p | am and
p - ak.

Let b � am�ak
2

; we will show that b cannot be the geometric mean of any subsequence
of a1, . . . , an.

Consider the geometric mean, g � t
?
ai1 � . . . � ait of an arbitrary subsequence of a1, . . . , an.

If none of ai1 , . . . , ait is divisible by p, then they are not greater than ak, so

g � t
?
ai1 � . . . � ait ¤ ak   am � ak

2
� b,

and therefore g � b.
Otherwise, if at least one of ai1 , . . . , ait is divisible by p, then 2g � 2 t

?
ai1 � . . . � ait is either

not an integer or is divisible by p, while 2b � am � ak is an integer not divisible by p, so g � b
again.

Solution 2. Like in the previous solution, we argue indirectly and assume that the numbers
a1, . . . , an written on the cards are not all equal and have no common divisor greater than 1.
The arithmetic mean of any two numbers on two cards is half of an integer; on the other
hand, it is a (some integer order) root of an integer. This means each pair's mean is an
integer, so all numbers on the cards must be of the same parity; hence they all are odd. Let
d � min

 
gcdpai, ajq : ai � aj

(
. By renumbering the cards we can assume that gcdpa1, a2q � d,

the sum a1 � a2 is maximal among such pairs, and a1 ¡ a2.

We will show that a1�a2
2

cannot be the geometric mean of any subsequence of a1 . . . , an.

Let a1 � xd and a2 � yd where x, y are coprime, and suppose that there exist some
b1, . . . , bt P ta1, . . . , anu whose geometric mean is a1�a2

2
. Let di � gcdpa1, biq for i � 1, 2, . . . , t

and let D � d1d2 � . . . � dt. Then

D � d1d2 � . . . � dt | b1b2 � . . . � bt �
�a1 � a2

2

	t
�
�x� y

2

	t
dt.

We claim that D | dt. Consider an arbitrary prime divisor p of D. Let νppxq denote the
exponent of p in the prime factorization of x. If p | x�y

2
, then p - x, y, so p is coprime with

x; hence, νppdiq ¤ νppa1q � νppxdq � νppdq for every 1 ¤ i ¤ t, therefore νppDq �
°
i νppdiq ¤

tνppdq � νppdtq. Otherwise, if p is coprime to x�y
2
, we have νppDq ¤ νppdtq trivially. The claim

has been proved.
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Notice that di � gcdpbi, a1q ¥ d for 1 ¤ i ¤ t: if bi � a1 then this follows from the de�nition
of d; otherwise we have bi � a1, so di � a1 ¥ d. Hence, D � d1 � . . . � dt ¥ dt, and the claim
forces d1 � . . . � dt � d.

Finally, by a1�a2
2

¡ a2 there must be some bk which is greater than a2. From a1 ¡ a2 ¥
d � gcdpa1, bkq it follows that a1 � bk. Now the have a pair a1, bk such that gcdpa1, bkq � d but
a1 � bk ¡ a1 � a2; that contradicts the choice of a1 and a2.
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Problem 6. Prove that there exists a positive constant c such that the following statement
is true:

Consider an integer n ¡ 1, and a set S of n points in the plane such that the distance
between any two di�erent points in S is at least 1. It follows that there is a line ` separating S
such that the distance from any point of S to ` is at least cn�1{3.

(A line ` separates a set of points S if some segment joining two points in S crosses `.)

Note. Weaker results with cn�1{3 replaced by cn�α may be awarded points depending on the
value of the constant α ¡ 1{3.
Solution. We prove that the desired statement is true with c � 1

8
. Set δ � 1

8
n�1{3. For any

line ` and any point X, let X` denote the projection of X to `; a similar notation applies to
sets of points.

Suppose that, for some line `, the set S` contains two adjacent points X and Y with
XY � 2d. Then the line perpendicular to ` and passing through the midpoint of segment XY
separates S, and all points in S are at least d apart from `. Thus, if d ¥ δ, then a desired
line has been found. For the sake of contradiction, we assume that no such points exist, in any
projection.

Choose two points A and B in S with the maximal distanceM � AB (i.e., AB is a diameter

of S); by the problem condition, M ¥ 1. Denote by ` the line AB. The set S is contained
in the intersection of two disks DA and DB of radius M centered at A and B, respectively.
Hence, the projection S` is contained in the segment AB. Moreover, the points in S` divide
that segment into at most n� 1 parts, each of length less than 2δ. Therefore,

M   n � 2δ. (1)

A

B

H

DB

DA

P
QT

a

h

Choose a point H on segment AB with AH � 1
2
. Let P be a strip between the lines a and h

perpendicular to AB and passing through A and H, respectively; we assume that P contains its
boundary, which consists of lines a and h. Set T � P X S and let t � |T |. By our assumption,
segment AH contains at least

P
1
2
: p2δqT points of S`, which yields

t ¥ 1

4δ
. (2)

Notice that T is contained in Q � P X DB. The set Q is a circular segment, and its
projection Qa is a line segment of length

2

d
M2 �

�
M � 1

2


2

  2
?
M.

On the other hand, for any two points X, Y P T , we have XY ¥ 1 and X`Y` ¤ 1
2
, so XaYa �a

XY 2 �X`Y 2
` ¥

?
3
2
. To summarize, t points constituting Ta lie on the segment of length less

than 2
?
M , and are at least

?
3
2

apart from each other. This yields 2
?
M ¡ pt� 1q

?
3
2
, or

t   1� 4
?
M?
3

  4
?
M, (3)
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as M ¥ 1.

Combining the estimates (1), (2), and (3), we �nally obtain

1

4δ
¤ t   4

?
M   4

?
2nδ, or 512nδ3 ¡ 1,

which does not hold for the chosen value of δ.

Comment 1. As the proposer mentions, the exponent �1{3 in the problem statement is optimal. In

fact, for any n ¥ 2, there is a con�guration S of n points in the plane such that any two points in S
are at least 1 apart, but every line ` separating S is at most c1n�1{3 log n apart from some point in S;
here c1 is some absolute constant.

On the other hand, it is much easier to prove the estimate of the form cn�1{2. E.g., setting

δ � 1
16n

�1{2 and applying (1), we see that S is contained in a disk D of radius 1
8n

1{2. On the other

hand, for each point X of S, let DX be the disk of radius 1
2 centered at X; all these disks have disjoint

interiors and lie within the disk concentric to D, of radius 1
16n

1{2 � 1
2   1

2n
1{2. Comparing the areas,

we get

n � π
4
¤ π

�
n1{2

16
� 1

2

�2

  πn

4
,

which is a contradiction.

Comment 2. In this comment, we discuss some versions of the solution above, which avoid concen-

trating on the diameter of S. We start with introducing some terminology suitable for those versions.

Put δ � cn�1{3 for a certain su�ciently small positive constant c. For the sake of contradiction,

suppose that, for some set S satisfying the conditions in the problem statement, there is no separating

line which is at least δ apart from each point of S.
Let C be the convex hull of S. A line is separating if and only if it meets C (we assume that a line

passing through a point of S is always separating). Consider a strip between two parallel separating

lines a and a1 which are, say, 1
4 apart from each other. De�ne a slice determined by the strip as the

intersection of S with the strip. The length of the slice is the diameter of the projection of the slice

to a.

In this terminology, the arguments used in the proofs of (2) and (3) show that for any slice T of

length L, we have
1

8δ
¤ |T | ¤ 1� 4?

15
L. (4)

The key idea of the solution is to apply these estimates to a peel slice, where line a does not cross

the interior of C. In the above solution, this idea was applied to one carefully chosen peel slice. Here,

we outline some di�erent approach involving many of them. We always assume that n is su�ciently

large.

Consider a peel slice determined by lines a and a1, where a contains no interior points of C. We

orient a so that C lies to the left of a. Line a is called a supporting line of the slice, and the obtained

direction is the direction of the slice; notice that the direction determines uniquely the supporting line

and hence the slice. Fix some direction v0, and for each α P r0, 2πq denote by Tα the peel slice whose

direction is v0 rotated by α counterclockwise.

When speaking about the slice, we always assume that the �gure is rotated so that its direction is

vertical from the bottom to the top; then the points in T get a natural order from the bottom to the

top. In particular, we may speak about the top half TpT q consisting of t|T |{2u topmost points in T ,
and similarly about its bottom half BpT q. By (4), each half contains at least 10 points when n is large.

Claim. Consider two angles α, β P r0, π{2s with β � α ¥ 40δ �: φ. Then all common points of Tα and

Tβ lie in TpTαq X BpTβq.
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a

a′

peel slice

slice

C
β
−
α

Pk

Pi

Tα

Tβ

`

C

Proof. By symmetry, it su�ces to show that all those points lie in TpTαq. Let a be the supporting

line of Tα, and let ` be a line perpendicular to the direction of Tβ . Let P1, . . . , Pk list all points in Tα,
numbered from the bottom to the top; by (4), we have k ¥ 1

8δ
�1.

Introduce the Cartesian coordinates so that the (oriented) line a is the y-axis. Let Pi be any point

in BpTαq. The di�erence of ordinates of Pk and Pi is at least
?
15
4 pk � iq ¡ 1

3k, while their abscissas

di�er by at most 1
4 . This easily yields that the projections of those points to ` are at least

k

3
sinφ� 1

4
¥ 1

24δ
� 20δ � 1

4
¡ 1

4

apart from each other, and Pk is closer to the supporting line of Tβ than Pi, so that Pi does not belong
to Tβ . l

Now, put αi � 40δi, for i � 0, 1, . . . ,
X
1
40δ

�1 � π2
\
, and consider the slices Tαi . The Claim yields that

each point in S is contained in at most two such slices. Hence, the union U of those slices contains at

least
1

2
� 1

8δ
� 1

40δ
� π
2
� λ

δ2

points (for some constant λ), and each point in U is at most 1
4 apart from the boundary of C.

It is not hard now to reach a contradiction with (1). E.g., for each point X P U , consider a closest

point fpXq on the boundary of C. Obviously, fpXqfpY q ¥ XY � 1
2 ¥ 1

2XY for all X,Y P U . This

yields that the perimeter of C is at least µδ�2, for some constant µ, and hence the diameter of S is of

the same order.

Alternatively, one may show that the projection of U to the line at the angle of π{4 with v0 has

diameter at least µδ�2 for some constant µ.
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