Mathematics Competition for the Seventh Graders of Oulu sub-region, 15-19 February 2016

- The time allotted is 50 minutes.
- The allowed tools are writing and drawing instruments, i.e. pencil, eraser, ruler and compass. Calculators and mathematical tables are not allowed.
- Each problem is worth one point. Wrong answers are not punished.
- The problems are not ordered in increasing difficulty, but the first problems are likely to be easier than the last ones.

1. Compute $11+22-33+44+55-66$.
a) 0
b) 11
c) 22
d) 33
e) 44
2. In a triangle, one angle is 27° and another is 50°. Compute the third angle of the triangle.
a) 93°
b) 100°
c) 103°
d) 110°
e) 113°
3. The following figure is colored with two colors in such a way that each cell is colored with exactly one color, and if two cells have a common side, they must be colored with different colors. How many ways to color the figure are there?

a) 1
b) 2
c) 4
d) 8
e) 128
4. Compute $19 \cdot 17-17 \cdot 15+15 \cdot 13-13 \cdot 11$.
a) 118
b) 119
c) 120
d) 121
e) 122
5. A sequence of numbers is said to be arithmetic if the difference between any two consecutive numbers is a constant. What is the fiftieth (50th) element in the arithmetic sequence 5,66 , $127, \ldots$?
a) 2994
b) 3054
c) 4567
d) 4673
e) 5112
6. In a cube of edge length 1 m , there is water up to the height 50 cm . This water is poured to a straight cylinder whose base is an isosceles triangle. The side lengths of the triangle are $\frac{\sqrt{5}}{2} \mathrm{~m}$, $\frac{\sqrt{5}}{2} \mathrm{~m}$ and 1 m . The water fills the entire cylinder but does not overflow. How tall is the cylinder?

a) 75 cm
b) $\frac{2}{\sqrt{5}} \mathrm{~m}$
c) 1 m
d) $\frac{\sqrt{5}}{2} \mathrm{~m}$
e) $1,5 \mathrm{~m}$
7. A stick one meter long is divided into three parts, and the lengths of these three parts relate to each other as the numbers $2: 5: 7$. How long is the shortest part?
a) $\frac{1}{5} \mathrm{~m}$
b) $\frac{2}{5} \mathrm{~m}$
c) $\frac{1}{7} \mathrm{~m}$
d) $\frac{2}{7} \mathrm{~m}$
e) $\frac{1}{9} \mathrm{~m}$
8. Let us consider the situation in the following picture, where $\alpha>90^{\circ}$. Lines l and t are parallel, and lines m and n are parallel. The angle $\angle P$ is 90°. How large is the angle β ?

a) α
b) $180^{\circ}-\alpha$
c) $\alpha+45^{\circ}$
d) $\alpha-45^{\circ}$
e) $\alpha-90^{\circ}$
9. On the first row, we write the lonely number 1 . On the second row we write the numbers 2 , 3 and 4 so that the number 3 is right under 1 . In the same vein, on the third row, we write the numbers $5,6,7,8$ and 9 so that the number 7 is under 3 . By continuing this way, we get a figure as follows:

$$
\begin{array}{ccccc}
& & 1 & & \\
& 2 & 3 & 4 & \\
5 & 6 & 7 & 8 & 9 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}
$$

What is the leftmost number on the tenth row of the figure?
a) 81
b) 82
c) 99
d) 100
e) 101
10. Person A and person B are in an exam. A can solve each problem in 4 minutes and B in 1 minute. B takes one hour off during the exam to sleep. A and B finish the exam at the same time. How many problems did the exam have?
a) 16
b) 17
c) 18
d) 19
e) 20
11. Order the numbers $a=11 / 15, b=13 / 19$, and $c=16 / 23$ from the smallest to the largest.
a) $b<c<a$
b) $c<a<b$
c) $a<b<c$
d) $c<b<a$
e) $b<a<c$
12. What is the sum of the digits of the numbers $10^{50}-81$?
a) 433
b) 442
c) 542
d) 551
e) 560
13. The radius of the larger circle is twice the radius of the smaller circle. How large a portion of the figure has been colored?

a) $\frac{3}{4}$
b) $\frac{4}{5}$
c) $\frac{5}{6}$
d) $\frac{6}{7}$
e) $\frac{7}{8}$
14. What is the remainder when the number $A=1+2+3+4+5+\ldots+2016$ is divided by the number 5 ?
a) 0
b) 1
c) 2
d) 3
e) 4
15. How many integer solutions does the equation $x^{2}+y^{2}=5$ have?
a) 4
b) 8
c) 12
d) 16
e) 20

